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Introduction

This is a collection of tools that are helpful for gait analysis. Some are
specific to the needs of the Human Motion and Control Lab at Cleveland State
University but other portions may have potential for general use. It is
relatively modular so you can use what you want. It is primarily structured as
a Python distribution but the Octave files are also accessible independently.

[image: Latest Version]
 [https://pypi.python.org/pypi/gaitanalysistoolkit/]
 [http://dx.doi.org/10.5281/zenodo.13006][image: https://travis-ci.org/csu-hmc/GaitAnalysisToolKit.png?branch=master]
 [http://travis-ci.org/csu-hmc/GaitAnalysisToolKit]


Python Packages

The main Python package is gaitanalysis and it contains five modules listed
below. oct2py is used to call Octave routines in the Python code where
needed.


	gait.py

	General tools for working with gait data such as gait landmark
identification and 2D inverse dynamics. The main class is GaitData.

	controlid.py

	Tools for identifying control mechanisms in human locomotion.

	markers.py

	Routines for processing marker data.

	motek.py

	Tools for processing and cleaning data from Motek Medical [http://www.motekmedical.com]‘s products,
e.g. the D-Flow software outputs.

	utils.py

	Helper functions for the other modules.



Each module has a corresponding test module in gaitanalysis/tests
sub-package which contain unit tests for the classes and functions in the
respective module.




Octave Libraries

Several Octave routines are included in the gaitanalysis/octave directory.


	2d_inverse_dynamics

	Implements joint angle and moment computations of a 2D lower body human.

	inertial_compensation

	Compensates force plate forces and moments for inertial effects and
re-expresses the forces and moments in the camera reference frame.

	mmat

	Fast matrix multiplication.

	soder

	Computes the rigid body orientation and location of a group of markers.

	time_delay

	Deals with the analog signal time delays.






Installation

You will need Python 2.7 and setuptools to install the packages. Its best to
install the dependencies first (NumPy, SciPy, matplotlib, Pandas, PyTables).
The SciPy Stack instructions are helpful for this:
http://www.scipy.org/stackspec.html.

Supported versions:


	python >= 2.7

	numpy >= 1.6.1

	scipy >= 0.9.0

	matplotlib >= 1.1.0

	tables >= 2.3.1

	pandas >= 0.12.0

	pyyaml >= 3.10

	DynamicistToolKit >= 0.3.5

	oct2py >= 1.2.0

	octave >= 3.8.1



We recommend installing Anaconda [http://docs.continuum.io/anaconda/] for users in our lab to get all of the
dependencies.

We also utilize Octave code, so an install of Octave with is also required. See
http://octave.sourceforge.net/index.html for installation instructions.

You can install using pip (or easy_install). Pip will theoretically [1] get
the dependencies for you (or at least check if you have them):

$ pip install https://github.com/csu-hmc/GaitAnalysisToolKit/zipball/master





Or download the source with your preferred method and install manually.

Using Git:

$ git clone git@github.com:csu-hmc/GaitAnalysisToolKit.git
$ cd GaitAnalysisToolKit





Or wget:

$ wget https://github.com/csu-hmc/GaitAnalysisToolKit/archive/master.zip
$ unzip master.zip
$ cd GaitAnalysisToolKit-master





Then for basic installation:

$ python setup.py install





Or install for development purposes:

$ python setup.py develop








	[1]	You will need all build dependencies and also note that matplotlib
doesn’t play nice with pip.





Dependencies

It is recommended to install the software dependencies as follows:

Octave can be installed from your package manager or from a downloadable
binary, for example on Debian based Linux:

$ sudo apt-get install octave





For oct2py to work, calling Octave from the command line should work after
Octave is installed. For example,

$ octave
GNU Octave, version 3.8.1
Copyright (C) 2014 John W. Eaton and others.
This is free software; see the source code for copying conditions.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  For details, type 'warranty'.

Octave was configured for "x86_64-pc-linux-gnu".

Additional information about Octave is available at http://www.octave.org.

Please contribute if you find this software useful.
For more information, visit http://www.octave.org/get-involved.html

Read http://www.octave.org/bugs.html to learn how to submit bug reports.
For information about changes from previous versions, type 'news'.

octave:1>





The core dependencies can be installed with conda in a conda environment:

$ conda create -n gait python=2.7 pip numpy scipy matplotlib pytables pandas pyyaml nose sphinx
$ source activate gait





And the dependencies which do not have conda packages can be installed into the
environment with pip:

(gait)$ pip install DynamicistToolKit oct2py










Tests

When in the repository directory, run the tests with nose:

$ nosetests








Vagrant

A vagrant file and provisioning script are included to test the code on both a
Ubuntu 12.04 and Ubuntu 13.10 box. To load the box and run the tests simply
type:

$ cd vagrant
$ vagrant up





See VagrantFile and the *bootstrap.sh files to see what’s going on.




Documentation

The documentation is hosted at ReadTheDocs:

http://gait-analysis-toolkit.readthedocs.org

You can build the documentation (currently sparse) if you have Sphinx and
numpydoc:

$ cd docs
$ make html
$ firefox _build/html/index.html








Contributing

The recommended procedure for contributing code to this repository is detailed
here. It is the standard method of contributing to Github based repositories
(https://help.github.com/articles/fork-a-repo).

If you have don’t have access rights to this repository then you should fork
the repository on Github using the Github UI and clone the fork that you just
made to your machine:

git clone git@github.com:<your-username>/GaitAnalysisToolKit.git





Change into the directory:

cd GaitAnalysisToolKit





Now, setup a remote called upstream that points to the main repository so
that you can keep your local repository up-to-date:

git remote add upstream git@github.com:csu-hmc/GaitAnalysisToolKit.git





Now you have a remote called origin (the default) which points to your
Github account’s copy and a remote called upstream that points to the main
repository on the csu-hmc organization Github account.

It’s best to keep your local master branch up-to-date with the upstream master
branch and then branch locally to create new features. To update your local
master branch simply:

git checkout master
git pull upstream master





If you have access rights to the main repository simply, clone it and don’t
worry about making a fork on your Github account:

git clone git@github.com:csu-hmc/GaitAnalysisToolKit.git





Change into the directory:

cd GaitAnalysisToolKit





Now, to contribute a change to the repository you should create a new branch
off of the local master branch:

git checkout -b my-branch





Now make changes to the software and be sure to always include tests! Make sure
all tests pass on your machine with:

nosetests





Once tests pass, add any new files you created:

git add my_new_file.py





Now commit your changes:

git commit -am "Added an amazing new feature."





Push your commits to a mirrored branch on the Github repository that you
cloned:

git push origin my-branch





Now visit the repository on Github (either yours or the main one) and you
should see a “compare and pull button” to make a pull request against the main
repository. Github and Travis-CI will check for merge conflicts and run the
tests again on a cloud machine. You can ask others to review your code at this
point and if all is well, press the “merge” button on the pull request.
Finally, delete the branches on your local machine and on your Github repo:

git branch -d my-branch && git push origin :my-branch






Git Notes


	The master branch on main repository on Github should always pass all tests
and we should strive to keep it in a stable state. It is best to not merge
contributions into master unless tests are passing, and preferably if
someone else approved your code.

	In general, do not commit changes to your local master branch, always pull in
the latest changes from the master branch with git pull upstream master
then checkout a new branch for your changes. This way you keep your local
master branch up-to-date with the main master branch on Github.

	In general, do not push changes to the main repo master branch directly, use
branches and push the branches up with a pull request.

	In general, do not commit binary files, files generated from source, or large
data files to the repository. See
https://help.github.com/articles/working-with-large-files for some reasons.








Release Notes


0.1.2


	Fixed bug preventing GaitData.plot_grf_landmarks from working.

	Removed inverse_data.mat from the source distribution.






0.1.1


	Fixed installation issue where the octave and data files were not included in
the installation directory.






0.1.0


	Initial release

	Copied the walk module from DynamicistToolKit @ eecaebd31940179fe25e99a68c91b75d8b8f191f








Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2013, Jason K. Moore.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	GaitAnalysisToolKit 0.2.0dev documentation 
 
      

    


    
      
          
            
  
Motek Module

Motek Medical [http://www.motekmedical.com] sells hardware/software packages which include treadmills with
force plate measurement capabilities and motion bases, motion capture systems,
visual displays, and other sensors for various measurements. Their software,
D-Flow [http://www.motekmedical.com/products/d-flow-software/], manages the data streams from the various systems and is responsible
for displaying interactive visuals, sounds, and motions to the subject. The
gaitanalysis.motek module includes classes that eases processing the
data collected from typical D-Flow output files, but may have some limitations
with respect to the hardware because we only have one system available.

The Human Motion and Control Lab at Cleveland State University has such a
system. Our system includes:


	A ForceLink [http://www.forcelink.nl/] R-Mill [http://www.forcelink.nl/index.php/product/r-mill/] which has dual 6 DoF force plates, independent belts for
each foot, and lateral and pitch motion capabilities.

	A 10 Camera Motion Analysis [http://www.motionanalysis.com] motion capture system which includes the
Cortex [http://www.motionanalysis.com/html/movement/cortex.html] software and hardware for collecting analog and camera data
simultaneously.

	Delsys [http://delsys.com] wireless EMG + 3D Accelerometers.

	Motek Medical’s D-Flow software and visual display system.



Cortex alone is capable of delivering data from the cameras, force plates, and
analog sensors (EMG/Accelerometer), but D-Flow is required to collect data from
digital sensors and the treadmill’s motion (lateral, pitch, and belts). D-Flow
can output multiple types of files which contain the different data.

Our motion capture system’s coordinate system is such that the X coordinate
points to the right, the Y coordinate points upwards, and the Z coordinate
follows from the right-hand-rule, i.e. points backwards with respect to a
person walking forward on the treadmill. The camera’s coordinate system is
aligned to an origin point on treadmill’s surface during camera calibration.


Mocap Module

D-Flow’s mocap module has a file tab which allows you to export the time series
data collected from Cortex in two different file formats: tab separated
values [http://en.wikipedia.org/wiki/Tab-separated_values] (TSV) and the C3D format (see http://www.c3d.org). The TSV files are
approximately twice the size of the C3D files, don’t maintain machine
precision, and do not allow for meta data storage. But for now, this software
only deals with the TSV file format.

The text file output from the mocap module in DFlow is a tab delimited file.
The first line is the header and contains a time stamp column, frame number
column, marker position columns, force plate force/moment columns, force plate
center of pressure columns, other analog columns, and potentially results from
the real time Human Body Model [http://dx.doi.org/10.1007/s11517-013-1076-z] which is included with the D-Flow software.
These are detailed below. The numerical values of the measurements are provided
in decimal floating point notation with 6 decimals of precision, e.g.
123456.123456 [%1.6f].


Data Column Descriptions


	Time Stamp

	The TimeStamp column records the D-Flow system time when it receives a
“frame” from Cortex in seconds since D-Flow was started. This is
approximately at 100 hz (Cortex’s sample rate), but has slight variability
per sample period, something like +/- 0.002 s or so. This column can be used
to synchronize with other D-Flow output files which include a D-Flow time
stamp, e.g. the output of the record module. The following figure shows the
difference, .diff(), of an example D-Flow time stamp, giving the
variability in periods at each measurement instance.

[image: _images/d-flow-time-stamp-diff.png]


	Frame Number

	The FrameNumber column gives a positive integer to count the frame
numbers delivered by Cortex. It seems as though none of the frames are
ever dropped but this should be verified.

	Marker Coordinates

	The columns that correspond to marker coordinates have one of three
suffixes: .PosX, .PosY, .PosZ. The prefix is the marker name
which is set by providing a name to the marker in Cortex. There are specific
names which are required for D-Flow’s Human Body Model’s computations. The
marker coordinates are given in meters. See below for some additional
virtual markers.

	Force Plate Kinetics

	There are three forces and three moments recorded by each of the two force
plates in Newtons and Newton-Meters, respectively. The prefix for these
columns is either FP1 or FP2 and represents either force plate 1
(left) or 2 (right). The suffixes are either .For[XYZ], .Mom[XYZ]
for the forces and moments, respectively. The force plate voltages are
sampled at a much higher frequency than the cameras, but delivered at the
Cortex camera sample rate, 100 Hz through the D-Flow mocap module. A
force/moment calibration matrix stored in Cortex converts the voltages to
forces and moments before sending it to D-Flow [1]. Cortex also computes
the center of pressure from the forces, moments, and force plate dimensions.
These have the same prefixes for the plate number, have the suffix
.Cop[XYZ], and are in meters.

	Analog Channels

	Cortex can sample additional analog channels. These columns have headers
which take this form Channel[1-99].Anlg and the names are fixed to
correspond to the channels in the National Instruments DAQ box which samples
the analog sensors. The first twelve of these are reserved for the force
plate voltage measurements. These correspond to the voltages of the force
sensors in the two force plates and are as follows (channels 1-12).


	F1Y1

	F1Y2

	F1Y3

	F1X1

	F1X2

	F1Z1

	F2Y1

	F2Y2

	F2Y3

	F2X1

	F2X2

	F2Z1



Top View of treadmill surface showing location of the Y sensors:

----------------------------
|    FP1     |     FP2     |
|            |             |
|         Y2 | Y2          |
|            |             |
|            |             |
| Y1         |          Y3 |    ----> X
|            |             |    |
|            |             |    V
|         Y3 | Y1          |    Z
|            |             |
----------------------------





The remaining analog channels are connected to the 16 Delsys
EMG/Accelerometers measurements. Each sensor has four signals: EMG, AccX,
AccY, and AccZ. The are ordered in the remaining channels as:


	EMG1

	ACCX1

	ACCY1

	ACCZ1

	EMG2

	ACCX2

	ACCY2

	ACCZ2

	etc.



Note that all of the signals are in volts!. You must scale them
yourself.


Note

The EMG/Acceleromter channels are 96 milliseconds behind the force plate
measurements, according to the DelSys manual [2]. There may be other
delays present too that may or may not be taken care of in Cortex or
D-Flow. The lag of the EMG/Accelerometers is due to the wireless
communication.





	Human Body Model

	The mocap TSV file can also contain joint angles [degrees], joint moments
[Newton-Meters], joint power [Watts], and muscle forces [Newtons] computed
by the real time Human Body model. The joint angle headers end in .Ang,
the joint moments in .Mom, the joint power .Pow, and the muscle
forces are prefixed with R_ or L_. D-Flow also outputs the centor of
mass in meters of the person in the HBM.COM.[XYZ] columns.

	Segment Positions and Rotations

	D-Flow also outputs positional and rotational information about body
segments. There are virtual markers with suffixes .Pos[XYZ] And there
are also segment rotations in degrees. These header labels end in
.Rot[XYZ]. The definition of the positions and rotations is unclear and
it is unclear what they are used for. The following list gives the prefixes:


	pelvis

	thorax

	spine

	pelvislegs

	lfemur

	ltibia

	lfoot

	toes

	rfemur

	rtibia

	rfoot

	rtoes




Todo

There are probably more of these for the upper body.










	[1]	Cortex currently does not output anything for the .MomY momemt on
both of the force plates. So D-Flow records the raw voltages from Cortex and
applies the calibration matrix in D-Flow to get correct values using an .idc
file.







	[2]	We’ve done independent measurements that show a ~72 millisecond delay.







Missing Values

D-Flow handles missing values internally to perform well with their real time
computations, but there are some important issues to note when dealing with the
data outputs from D-Flow with regards to missing values. Depending on how many
markers were used, where they were placed, and what analysis is used, different
techniques can be used to fill in the gaps.

Firstly, the markers sometimes go missing (i.e. can’t been seen by the cameras)
which is typical of motion capture systems. Care must be taken that all markers
are always captured by the system, but there will always be some missing
values. If the data was recorded in a D-Flow version less than 3.16.2rc4 [3],
D-Flow records the last non-missing value in all three axes until the marker is
visible again when a marker goes missing. The following figure gives an
example:

[image: _images/constant-markers.png]



	[3]	We received versions 3.16.1 and then 3.16.2rc4 so I have no idea when
the change was introduced between those versions. If this software is used
with a version between 3.16.1 and 3.16.2c4, then it may or may not work
correctly.




In D-Flow versions greater than or equal to 3.16.2rc4 the missing markers are
indicated in the TSV file as either 0.000000 or -0.000000, which is the
same as has been in the HBM columns in all versions of D-Flow. The D-Flow
version must be provided in the meta data yml file, otherwise it will assume
D-Flow is at the latest version.

The mocap output file can also contain variables computed by the real time
implementation of the Human Body Model (HBM). If the HBM computation fails at a
D-Flow sample period, strings of zeros, either 0.000000 or -0.000000,
are inserted for missing values. The following figure shows the resulting HBM
output with zeros:

[image: _images/hbm-missing.png]
Notice that failed HBM computations don’t always correspond to missing markers.

The HBM software only handles zero values for marker coordinates. If markers
are zero, then HBM ignores them and tries to compute the inverse dynamics with
a reduced set of markers. So if you playback recordings which have missing
markers stored as constant values in D-Flow, you will likely get incorrect
inverse dynamics.




Time Delays

There are time delays between the camera marker data, force plate analog
signals, and the wireless EMG/Accelerometers. The documentation for the Delsys
wireless system explicity states that there is a 96ms delay in the data with
respect to the analog signals that are sampled from the unit which is due to
the wireless data transfer. There is also an measurable delay in the camera
data with respect to the analog data which seems to hover around 7 ms.




Other

Note that the order of the “essential” measurements in the file must be
retained if you expect to run the file back into D-Flow for playback. I think
the essential measurements are the time stamp, frame number, marker
coordinates, and force plate kinetics, and analog channels [4] (maybe because
of the IDC file).




	[4]	The first twelve analog channels may only be required because we use the
.idc file to work around the fact that the .MomY force plate moments
are not correctly collected by D-Flow from Cortex.







Inertial Compensation

If you accelerate the treadmill there will be forces and moments measured by
the force plates that simply come from the inertial effects of the motion. When
external loads are applied to the force plates, you must subtract these
inertial forces from the measured forces to get correct estimates of the body
fixed externally applied forces.

The markers are measured with respect to the camera’s inertial reference frame,
earth, but the treadmill forces are measured with respect to the treadmill’s
laterally and rotationally moving reference frame. We need both to be expressed
in the same inertial reference frame for ease of future computations.

To deal with this we measure the location of additional markers affixed to the
treadmill and the 3D acceleration of the treadmill at 4 points.

Typically, the additional accelerometers are connected to these channels and the
arrow on the accelerometers which aligns with the local X axis direction is
always pointing forward (i.e. aligned with the negative z direction).

# Front left
Channel13.Anlg : EMG
Channel14.Anlg : AccX
Channel15.Anlg : AccY
Channel16.Anlg : AccZ

# Back left
Channel17.Anlg : EMG
Channel18.Anlg : AccX
Channel19.Anlg : AccY
Channel20.Anlg : AccZ

# Front right
Channel21.Anlg : EMG
Channel22.Anlg : AccX
Channel23.Anlg : AccY
Channel24.Anlg : AccZ

# Back right
Channel25.Anlg : EMG
Channel26.Anlg : AccX
Channel27.Anlg : AccY
Channel28.Anlg : AccZ





This information will be stored in the meta data file, see below.

Location of of accels and markers should stay the same between unloaded and
loaded trials, but position doesn’t matter other wise.






Record Module

The record module in D-Flow allows one to sample any signal available in the
D-Flow environment at the variable D-Flow sample rate which can vary from 0 to
300 Hz depending on how fast D-Flow is completing it’s computations. Any signal
that you desire to record, including the ones already provided in the Mocap
Module, are available. This is particularly useful for measuring the motions of
the treadmill: both belts’ speed, lateral motion, and pitching motion. The
record module only outputs a tab delimited text file. It includes a Time
column which records the D-Flow system time in seconds which corresponds to the
same time recorded in the TimeStamp column in mocap module tsv file. And it
additionally records the 6 decimal precision values of other measurements that
you include. Finally, the record module is capable of recording the time at
which various D-Flow events occur. It does this by inserting commented (#)
lines in between the rows when the event occurred. For example an event may
look like:

#
# EVENT A - COUNT 1
#





Where A is the event name (fixed by D-Flow, you can’t select custom names)
and the number after COUNT gives an integer count of how many times that
event has occurred. D-Flow only seems to allow a total of 6 unique events to be
recorded, with names A-F. At the end of the file the total number of event
occurrences are counted:

# EVENT A occured 1 time
# EVENT B occured 1 time
# EVENT C occured 1 time
# EVENT D occured 1 time
# EVENT E occured 1 time






Treadmill

The right and left belt speeds can be measured with the record module. You must
select a check box in the treadmill module to ensure that the actual speed is
recorded and not the desired speed. It does not seem possible to measure the
pitch angle nor the lateral position of the treadmill using the record module,
it only records the desired (the input) to each.






Meta Data

D-Flow does not have any way to store meta data with its output. This is
unfortunate because the C3D format has full support for meta data. It is also
possible to add meta data into the header of text files, but it is not the
cleanest solution. So we’ve implemented our own method to track this
information. The DFlowData class has the option to include a meta data file
with the other data files that can record arbitrary data about the trial.
Things like subject id, subject body segment parameter info, trial description,
etc can and should be included. This data will be available for output to the
C3D format or other data storage formats and can be used for internal
algorithms in further analysis.

The meta data file must conform to the YAML [http://en.wikipedia.org/wiki/YAML] format, which is a common human
readable data serialization format. As time progresses the structure of the
meta data file will become more standard, but for now there are only a few
requirements.


Basics

There are some standard meta data that should be collected with every trial.

study:
    id: 58
    name: Control Identification
    description: Perturb the subject during walking and running.
subject:
    id: 567
    birthdate: 1982-05-17
    age: 28
    mass: 70
    mass-units: kilogram
    height: 1.82
    height-units: meters
    gender: male/female # for body seg calcs in hbm
trial:
    id: 1
    datetime: 2013-12-03 05:06:00
    notes: text to give anomalies
    nominal-speed: 5
    nominal-speed: m/s
    stationary-platform: True/False
    pitch: True
    sway: True
    marker-set: full/lower/NA
    dflow-version: 3.16.1
    hardware-settings:
       high-performance: True/False
    files:
        compensation: ../T002/mocap-module-002.txt
        mocap: mocap-module-001.txt
        record: record-module-001.txt
        cortex: cortex-001.cap
        mox: gait-001.mox
        meta: meta-001.yml
    marker-map:
        M5: T10
        M6: STRN






Todo

HBM requires some measurements of the person and that can be found in the
HBM tab of the mocap module. We should include those here. ankle width, knee
with, cuttoff frequency.




Todo

We need to store the scaling factors/matrices for the analog signals
in the meta data.




	study

	
	id

	Some unique identified for your study.

	name

	A string which contains the name of the project.

	description

	One or more sentences that give a basic description of the project.





	subject

	
	id

	A unique identifier for the subject in this trial. This can be a
number, a string, etc.

	birth-date

	A date formatted string that gives the subjects birthdate.

	age

	A integer giving the subjects age in years at the time of the trial.
It’s better to provide the subject’s birthdate so that the age can be
computed for the date of the trial.

	mass

	A positive real number giving the subjects weight. Note that actual
weight on the trial day can likely be computed from the force plate
data and that should be used for accuracy purposes.

	mass-units

	The full name or standard unit symbol for the mass quantity.

	height

	A positive real number giving the subject’s height the day of the
trial.

	height-units

	The full name or standard unit symbol for the height quantity.

	gender

	A string describing the gender of the subject.





	trial

	
	id

	A unique identifier for this trial. The meta file name should also
include this identifier.

	datetime

	A date formatted string giving the date and/or time of the trial. If
you are concerned about the time zone, UTC time is the best to use
here.

	notes

	A string with a any notes about the trial. The more of this information
that can be included in structured tags in the meta.yml file the
better. This should be a catch-all otherwise.

	nominal-speed

	Most trials have a nominal speed throughout the duration of the trial.
This field can be used to denote that. This is primarily for reference as
the actual speed can be recorded in D-Flow’s record module.

	nominal-speed-units: m/s

	The full name or standard unit symbol for the mass quantity.

	stationary-platform

	A boolean value, [True|False], that indicates whether the treadmill
motion was actuated during the trial. If this flag is false, the
DFlowData class will look for compensation data, compensate for the
inertial affects to the force plate data, and express the forces and
moments in the motion capture reference frame.

	pitch

	A boolean value, [True|False], which indicates if the pitch degree of
freedom was acutated during the trial.

	sway

	A boolean value, [True|False], which indicates if the lateral (sway)
degree of freedom was acutated during the trial.

	marker-set

	A string that indicates the HBM marker set used during the trial
[full|lower|NA].

	dflow-version

	This should be a string that matches the version of D-Flow used to record
the trial. This is required to deal with changes in D-Flow’s output from
earlier versions we had.

	cortex-version

	This should be a string that matches the version of Cortex used to record
the trial.

	hardware-settings

	There are tons of settings for the hardware in both D-Flow, Cortex, and
the other software in the system. We hope to save the settings from each
software with each trial, but for now this field can be used to note the
most important ones.


	high-performance

	A boolean value that indicates whether the D-Flow high performance
setting was on (True) or off (False).





	files

	This should be a key value mapping of files associated with this trial.
The values should be the path to the file relative to this meta file.

	marker-map

	If you want to rename the column headers for markers in the mocap module
or record module’s TSV files then you can specify the mapping here. For
example, if the column headings in the raw data file are M5.PosX,
M5.PosY, and M5.PosZ but you want to give the marker an easy to
remember name, then the marker map M5: T10 will set the column
headers for that marker to T10.PosX, T10.PosY, and T10.PosZ,
respectively. This only works for header names that end in .Pos[XYZ].










Analog Channel Names

Since D-Flow doesn’t allow you to set the names of the analog channels in the
mocap module, the meta data file should include mappings, so that useful
measurement names will be available for future use, for example:

trial:
    analog-channel-map:
        Channel1.Anlg: F1Y1
        Channel2.Anlg: F1Y2
        Channel3.Anlg: F1Y3
        Channel4.Anlg: F1X1
        Channel5.Anlg: F1X2
        Channel6.Anlg: F1Z1
        Channel7.Anlg: F2Y1
        Channel8.Anlg: F2Y2
        Channel9.Anlg: F2Y3
        Channel10.Anlg: F2X1
        Channel11.Anlg: F2X2
        Channel12.Anlg: F2Z1
        Channel13.Anlg: Front_Left_EMG
        Channel14.Anlg: Front_Left_AccX
        Channel15.Anlg: Front_Left_AccY
        Channel16.Anlg: Front_Left_AccZ
        Channel17.Anlg: Back_Left_EMG
        Channel18.Anlg: Back_Left_AccX
        Channel19.Anlg: Back_Left_AccY
        Channel20.Anlg: Back_Left_AccZ
        Channel21.Anlg: Front_Right_EMG
        Channel22.Anlg: Front_Right_AccX
        Channel23.Anlg: Front_Right_AccY
        Channel24.Anlg: Front_Right_AccZ
        Channel25.Anlg: Back_Right_EMG
        Channel26.Anlg: Back_Right_AccX
        Channel27.Anlg: Back_Right_AccY
        Channel28.Anlg: Back_Right_AccZ





16 accelerometers in order starting at Channel13. EMG, X, Y, Z order




Events

D-Flow doesn’t allow you to define names to events and auto-names up to 6
events A-F. You can specify an event name map that will be used to
automatically segment your data into more memorable names events:

trial:
   event:
       A: force plate zeroing begins
       B: walking begins
       C: walking with lateral perturbations begins










Usage

The DFlowData class is used to post process data collected from the D-Flow
mocap and record modules. It does these operations:


	Loads the meta data file into a Python dictionary if there is one.

	Loads the mocap and record modules into Pandas DataFrames. [5]

	Shifts the Delsys signals in the mocap module data to accomodate for the
wireless time delay, ~96ms.

	Identifies the missing values in the mocap marker data and replaces with
NaN.

	Returns statistics on how many missing values in the marker time series are
present, the max consecutive missing values, etc.

	Optionally, interpolates the missing marker values and replaces them with
interpolated estimates.

	Compensates the force measurments for the motion of the treadmill base.
	Pulls the compensation file path from meta data.

	Loads the compensation file (only the necessary columns).

	Identifies the missing markers and interpolates to fill them.

	Shifts the Delsys signals to correct time.

	Filter the forces, accelerometer, and treadmill markers at 6 hz low pass.

	Compute the compensated forces (apply inertial compensation and express
in global reference frame)

	Replace the force/moment measurements in the mocap data file with the
compensated forces/moments.





	Scales the analog signals to their proper units. [6]

	Merges the data from the mocap module and record module into one
DataFrame.

	Optionally, low pass filter all human related data. (If there wasn’t a
stationary platform, then these should always be filtered with the same low
pass filter as the compensation algorithm used.)

	Extracts sections of the data based on event names.

	Writes the cleaned and augmented data to file [7].






	[5]	Only supports TSV files, we plan to add C3D support for the mocap file.







	[6]	Not implemented yet, scaling factors should be stored in meta data?.







	[7]	Only outputs to tsv.





Python API

The DFlowData class gives a simple Python API for working with the
D-Flow file outputs.

from gaitanalysis.motek import DFlowData

# Initialize the object.
data = DFlowData(mocap_tsv_path='trial_01_mocap.txt',
                 record_tsv_path='trial_01_record.txt',
                 meta_yml_path='trial_01_meta.yml')

# clean_data runs through steps 1 through 8. Many steps are optional
# depending on the optional keyword arguments.
data.clean_data()

# The following command returns a Pandas DataFrame of all the measurements
# for the time period matching the event.
perturbed_walking = data.extract_processed_data(event='walking with perturbation')

# The class in includes writers to write the manipulated data to file, in
# this case a D-Flow compatible text file.
data.write_dflow_tsv('trial_01_clean.txt')








Command Line

The following command will load the three input files, clean up the data, and
write the results to file, which can be loaded back into D-Flow or used in some
other application.

dflowdata -m trial_01_mocap.txt -r trial_01_record.txt -y trial_01_meta.yml trial_01_clean.txt








Examples

This shows how to compare the raw marker data with the new interpolated data,
in this case a simple linear interpolation.

import pandas
import maplotlib.pyplot as plt

data = DFlowData('mocap-module-01.txt', 'record-module-01.txt')
data.clean_data()

unclean = pandas.read_csv('mocap-module-01.txt', delimiter='\t')

fig, axes = plt.subplots(3, 1, sharex=True)

for i, label in enumerate(['RHEE.PosX', 'RHEE.PosY', 'RHEE.PosZ']):

   axes[i].plot(data.data['TimeStamp'], data.data[label],
                unclean['TimeStamp'], unclean[label], '.')

   axes[i].set_ylabel(label + ' [m]')

   axes[i].legend(['Interpolated', 'Raw'], fontsize=8)

axes[2].set_xlabel('Time')

fig.show()





[image: _images/linear-interpolation.png]
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Gait Module

The gaitanalysis.gait module provides tools to process and analyze
with typical data collected during the measurement of human locomotion (gait).
In general, the three dimensional coordinates throughout time of a set of
markers which are attached to anatomical features on the human are tracked.
Secondly, various analog signals are recorded. In particular, voltages which
are proportional to the applied forces and moments on one or two force plates,
voltages from electromyography (EMG) measurements, and/or accelerometers, etc.
All of these measurements are stored as discrete samples in time.
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gaitanalysis Package

The following documentation provides both the pubic and private API for the
modules included in the gaitanalysis package. We will try our best to follow
semantic versioning [http://semver.org/] with respect to the public API. The
private member functions, starts with _, are subject to change during
development and will not be held to semantic versioning. Use at your own risk.


motek Module


	
class gaitanalysis.motek.DFlowData(mocap_tsv_path=None, record_tsv_path=None, meta_yml_path=None)

	Bases: object

A class to store and manipulate the data outputs from Motek Medical’s
D-Flow software.


	
_analog_column_labels(labels)

	Returns a list of analog channel column labels and the indices of
the labels.





	Parameters:	labels : list of strings


This should be a superset of column labels, some of which may be
human body model results, and should include the default analog
channel labels output from the D-Flow mocap model, i.e.
“Channel[1-99].Anlg”.







	Returns:	analog_labels : list of strings


The labels of analog channels in the order found
in labels.




analog_indices : list of integers


The indices of the analog columns with respect to the indices of
labels.




emg_column_labels : list of strings


The labels of emg channels in the order found in labels




accel_column_labels : list of strings


The labels of accelerometer channels in the order found
in labels















	
_c = 'Z'

	




	
_calibrate_accel_data(data_frame, y1=0, y2=-9.81)

	Two-point calibration of accelerometer signals.
Converts from voltage to meters/second^2





	Parameters:	data_frame : pandas.DataFrame


Accelerometer data  in volts to be calibrated




y1 : float, optional

y2 : float, optional




	Returns:	data_frame : pandas.DataFrame


Calibrated accelerometer data in m/s^2










Notes

A calibration file must be specified in the meta file and its
structure is as follows:
There must be a column for each accelerometer signal to be calibrated,
so three columns per sensor. There must be three rows of accelerometer
readings. The first row is the reading when the sensors are placed with
z-axis pointing straight up. The second row is the reading when the
x-axis is pointing straight up. The third row is the reading when the
y-axis is pointing straight up.
(xyz)
—–
(001)
(100)
(010)






	
_clean_compensation_data(data_frame)

	Returns a the data frame with Delsys signals shifted and all
signals low pass filtered.





	Parameters:	data_frame : pandas.DataFrame


This data frame should contain only the columns needed for the
compensation calculations: accelerometers and forces/moments.







	Returns:	data_frame : pandas.DataFrame


The cleaned compensation data.















	
_compensate(mocap_data_frame, markers_missing=False)

	Returns the data frame with the forces compensated.





	Parameters:	mocap_data_frame : pandas.DataFrame


A data frame that contains the force plate forces and moments to
be compensated, along with the measurements of the markers and
accelerometers that were attached to the treadmill.




markers_missing : pandas.DataFrame


If the treadmill markers have missing markers, this should be
true so that they are fixed before the compensation.







	Returns:	mocap







Notes

This method does the following:


	Pulls the compensation file path from meta data.



	Loads the compensation file (only the necessary columns).



	Identifies the missing markers in the compensation file and
interpolates to fill them.



	Shifts the Delsys signals to correct time.



	Filter the forces, accelerometer, and treadmill markers at 6 hz low pass.



	
	Compute the compensated forces (apply inertial compensation and express

	in global reference frame)







	
	Replace the force/moment measurements in the mocap data file with the

	compensated forces/moments.














	
_compensate_forces(calibration_data_frame, data_frame)

	Computes the forces and moments which are due to the lateral and
pitching motions of the treadmill and subtracts them from the
measured forces and moments based on linear acceleration
measurements of the treadmill.






	
_compensation_needed()

	Returns true if the meta data includes:

‘trial: stationary-platform: False’






	
_end = 'Z'

	




	
_express(data_frame, rotation_matrix)

	Returns a new data frame in which the marker, force, moment, and
center of pressure vectors are expressed in a different reference
frame using the provided rotation matrix.





	Parameters:	data_frame : pandas.DataFrame


A data frame which contains columns for the DFlow marker, force,
moment, and center of pressure outputs.




rotation_matrix : array_like, shape(3, 3)


A rotation matrix which will be premultiplied to all vectors in
the provided data frame.







	Returns:	rotated_data_frame : pandas.DataFrame


A copy of the provided data frame in which all vectors are
expressed in a new reference frame.










Notes

If v_df is a vector expressed in data frame’s original coordinate
system and v_new is the same vector expressed in the desired
coordinate system, then:

v_new = rotation_matrix * v_df

This function does nothing with the segment columns. As it stands it
is not clear what the .Rot[XYZ] columns are so all segment columns
are left alone.

This function also does not currently deal with any human body model
columns, e.g. the center of mass.






	
_express_in_isb_standard_coordinates(data_frame)

	Returns a new data frame in which the marker, force, moment, and
center of pressure vectors are expressed in the the ISB standard
coordinate system given in [Wu1995]. This referene frame has the X
axis aligned in the directin of travel, the Y axis vertical and
opposite of gravity, and the Z axis to the right, following the
right hand rule.





	Parameters:	data_frame : pandas.DataFrame


A data frame which contains columns for the DFlow marker, force,
moment, and center of pressure outputs. The coordinate system
for the vectors must be the Cortex default system (X to the
right, Y up, Z backwards).







	Returns:	rotated_data_frame : pandas.DataFrame


A copy of the provided data frame in which all vectors are
expressed in the ISB standard coordinate system.










Notes

See DflowData._express for more details.

References




	[Wu1995]	(1, 2) Wu G. and Cavanagh, P. R., 1995, “ISB recommendations
for standardization in the reporting of kinematic data”, J.
Biomechanics, Vol 28, No 10.









	
_extract_events_from_record_file()

	Returns a dictionary of events and times. The event names will be
the default A-F which is output by D-Flow unless you specify unique
names in the meta data file. If there are no events in the record
file, this will return nothing.






	
_force_column_labels(without_center_of_pressure=False)

	Returns a list of force column labels.





	Parameters:	without_center_of_pressure: boolean, optional, default=False


If true, the center of pressure labels will not be included in
the list.







	Returns:	labels : list of strings


A list of the force plate related signals.















	
_generate_cortex_time_stamp(data_frame)

	Returns the data frame with a new index based on the constant
sample rate from Cortex.






	
_hbm_column_labels(labels)

	Returns a list of human body model column labels, the indices of
the labels, and the indices of the non-hbm labels in relation to the
rest of the header.





	Parameters:	labels : list of strings


This should be a superset of column labels, some of which may be
human body model results.







	Returns:	hbm_labels : list of strings


The labels of columns of HBM data time series in the order found
in labels.




hbm_indices : list of integers


The indices of the HBM columns with respect to the indices of
labels.




non_hbm_indices : list of integers


The indices of the non-HBM columns with respect to the indices
of labels.















	
static _header_labels(path_to_file, delimiter='t')

	Returns a list of labels from the header, i.e. the first line of
a delimited text file.





	Parameters:	path_to_file : string


Path to the delimited text file with a header on the first line.




delimiter : string, optional, default=’ ‘


The delimiter used in the file.







	Returns:	header_labels : list of strings


A list of the headers in order as included from the file.















	
_identify_missing_markers(data_frame)

	Returns the data frame in which all marker columns have had
constant marker values replaced with NaN.





	Parameters:	data_frame : pandas.DataFrame, size(n, m)


A data frame which contains columns of marker position time
histories. The marker time histories may contain periods of
constant values.







	Returns:	data_frame : pandas.DataFrame, size(n, m)


The same data frame which was supplied expect that constant
values in the marker columns have been replaced with NaN.










Notes

D-Flow replaces missing marker values with the last available
measurement in time. This method is used to properly replace them
with a unique idnetifier, NaN. If two adjacent measurements in time
were actually the same value, then this method will replace the
subsequent ones with NaNs, and is not correct, but the likelihood of
this happening is low.






	
_load_compensation_data()

	Returns a data frame which includes the treadmill forces/moments,
and the accelerometer signals as time series with respect to the
D-Flow time stamp.






	
_load_mocap_data(ignore_hbm=False, id_na=False)

	Returns a data frame generated from the mocap TSV file.





	Parameters:	ignore_hbm : boolean, optional, default=False


If true, the columns associated with D-Flow’s real time human
body model computations will not be loaded.




id_na : boolean, optional, default=False


If true the marker and/or HBM columns will be loaded with all
‘0.000000’ and ‘-0.000000’ strings in the HBM columns replaced
with numpy.NaN. This is dependent on the D-Flow version as,
versions <= 3.16.1 stored missing markers as the previous valid
value.







	Returns:	data_frame : pandas.DataFrame












	
_load_record_data()

	Returns a data frame containing the data from the record
module.






	
_marker_column_labels(labels)

	Returns a list of column labels that correpsond to markers, i.e.
ones that end in ‘.PosX’, ‘.PosY’, or ‘.PosZ’, given a master list.





	Parameters:	labels : list of strings


This should be a superset of column labels, some of which may be
marker column labels.







	Returns:	marker_labels : list of strings


The labels of columns of marker time series in the order found
in labels.















	
_merge_mocap_record()

	Returns a data frame that is a merger of the mocap and record
data, if needed.






	
_missing_markers_are_zeros()

	Returns True if the mocap module marker missing values are
represented as strings of zeros, ‘-0.000000’ and ‘0.000000’ and
False if missing markers are represented as the previous valid
value. This depends on the D-Flow version being present in the trial
meta data. If it isn’t then it is assumed that missing markers are
represented as strings of zeros, i.e. latest D-Flow behavior.






	
_mocap_column_labels()

	Returns a list of strings containing the motion capture file’s
column labels. The list is in the same order as in the mocap tsv
file.






	
_orient_accelerometers(data_frame)

	



	Parameters:	mocap_data_frame : pandas.DataFrame


DataFrame containing accelerometer signals to be placed in treadmill
reference frame.







	Returns:	mocap_data_frame : pandas.DataFrame


DataFrame containing accelerometer signals in treadmill
reference frame.















	
_parse_meta_data_file()

	Returns a dictionary containing the meta data stored in the
optional meta data file.






	
_relabel_analog_columns(data_frame)

	Relabels analog channels in data frame to names defined in the
yml meta file. Channels not specified in the meta file are keep
their original names. self.analog_column_labels,
self.emg_column_labels, and self.accel_column_labels are updated
with the new names.





	Parameters:	data_frame : pandas.DataFrame, size(n, m)




	Returns:	data_frame : pandas.DataFrame, size(n, m


The same data frame with columns relabeled.















	
_relabel_markers(data_frame)

	Returns the data frame with the columns renamed to reflect the
provided mapping and updates the marker column and mocap column
label attributes to reflect the new names. If there is no marker map
in the meta data the data frame is returned unmodified.





	Parameters:	data_frame : pandas.DataFrame


A data frame with column names which match the keys in
the meta data:trial:marker-map.















	
_resample_record_data(data_frame)

	Resamples the raw data from the record file at the sample rate of
the mocap file.






	
_segment = 'rtoes'

	




	
_shift_delsys_signals(data_frame, time_col='TimeStamp')

	Returns a data frame in which the Delsys columns are linearly
interpolated (and extrapolated) at the time they were actually
measured.






	
_store_compensation_data_path()

	Stores the path to the compensation data file.

Notes

The meta data yaml file must include a relative file path to a mocap
file that contains time series data appropriate for computing the
force inertial and rotational compensations. The yaml declaration
should look like this example:


	files:

	mocap: mocap-378.txt
record: record-378.txt
meta: meta-378.yml
compensation: ../path/to/mocap/file.txt








	
_suffix = '.RotZ'

	




	
_suffix_beg = '.Cop'

	




	
analog_channel_regex = '^Channel[0-9]+\\.Anlg$'

	




	
c = 'Z'

	




	
clean_data(ignore_hbm=False, id_na=True, interpolate=True, interpolation_order=1)

	Returns the processed, “cleaned”, data.





	Parameters:	ignore_hbm : boolean, optional, default=False


HBM columns will not be loaded from the mocap model data TSV
file. This can save some load time if you are not using that
data.




id_na : boolean, optional, default=True


Identifies any missing values in the marker and/or HBM data and
replaces the with np.NaN.




interpolate : boolean, optional, default=True


If true, the missing values in the markers and/or HBM columns
will be interpolated. Note that if force compensation is needed,
the markers on the treadmill will always have the missing values
interpolated regardless of this flag. This argument is ignored
if id_na is False, as there are no identified missing marker
values available to interpolate over.




interpolation_order : integer, optional, default=1


The spline interpolation order (between 1 and 5). See
scipy.interpolate.InterpolatedUnivariateSpline.










Notes


	Loads the mocap and record modules into Pandas DataFrames.



	Relabels the columns headers to more meaningful names if this is
specified in the meta data.



	Shifts the Delsys signals in the mocap module data to accomodate
for the wireless time delay. The value of the delay is stored in
DflowData.delsys_time_delay.



	Identifies the missing values in the mocap marker data and
replaces them with numpy.nan.



	Optionally, interpolates the missing marker and HBM values and
replaces them with interpolated estimates.



	Compensates the force measurments for the motion of the treadmill
base, if needed.



	Pulls the compensation mocap file path from meta data.

	Loads the compensation mocap file (only the necessary columns).

	Identifies the missing markers and interpolates to fill them.

	Shifts the Delsys signals to correct time.

	Filter the forces, accelerometer, and treadmill markers with
a 6 hz low pass 2nd order Butterworth filter.

	Computes the compensated forces by subtracting the inertial
forces and expressing the forces in the camera reference frame.

	Replaces the force/moment measurements in the mocap data file
with the compensated forces/moments.











	Merges the data from the mocap module and record module into one
data frame.








	
constant_marker_tolerance = 1e-16

	




	
cortex_sample_rate = 100

	




	
delsys_time_delay = 0.096

	




	
dflow_segments = ['pelvis', 'thorax', 'spine', 'pelvislegs', 'lfemur', 'ltibia', 'lfoot', 'toes', 'rfemur', 'rtibia', 'rfoot', 'rtoes']

	




	
extract_processed_data(event=None, index_col=None, isb_coordinates=False)

	Returns the processed data in a data frame. If an event name is
provided, then a data frame with only that event is returned.





	Parameters:	event : string, optional, default=None


A name of a detected event. Must be a valid key in self.events.
This will be either the D-Flow auto-named events (A, B, C, D, E,
F) or the names specified in the meta data file.




index_col : string, optional, default=None


A name of a column in the data frame. If provided the the column
will be removed from the data frame and used as the index. This
is useful for assigning one of the time columns as the index.




isb_coordinates : boolean, optional, default=False


If True, the marker, force, moment, and center of pressure
vectors will be expressed in the ISB standard coordinate system
instead of the Cortex default coordinate system.







	Returns:	data_frame : pandas.DataFrame


The processed data.















	
force_plate_names = ['FP1', 'FP2']

	




	
force_plate_regex = '^FP[12]\\.[For|Mom|Cop][XYZ]$'

	




	
force_plate_suffix = ['.ForX', '.MomX', '.CopX', '.ForY', '.MomY', '.CopY', '.ForZ', '.MomZ', '.CopZ']

	




	
hbm_column_regexes = ['^\\s?[LR]_.*', '.*\\.Mom$', '.*\\.Ang$', '.*\\.Pow$', '.*\\.COM.[XYZ]$']

	




	
hbm_na = ['0.000000', '-0.000000']

	




	
low_pass_cutoff = 6.0

	




	
marker_coordinate_regex = '.*\\.Pos[XYZ]$'

	




	
marker_coordinate_suffixes = ['.PosX', '.PosY', '.PosZ']

	




	
missing_value_statistics(data_frame)

	Returns a report of missing values in the data frame.






	
rotation_suffixes = ['.RotX', '.RotY', '.RotZ']

	




	
segment_labels = ['pelvis.PosX', 'pelvis.PosY', 'pelvis.PosZ', 'pelvis.RotX', 'pelvis.RotY', 'pelvis.RotZ', 'thorax.PosX', 'thorax.PosY', 'thorax.PosZ', 'thorax.RotX', 'thorax.RotY', 'thorax.RotZ', 'spine.PosX', 'spine.PosY', 'spine.PosZ', 'spine.RotX', 'spine.RotY', 'spine.RotZ', 'pelvislegs.PosX', 'pelvislegs.PosY', 'pelvislegs.PosZ', 'pelvislegs.RotX', 'pelvislegs.RotY', 'pelvislegs.RotZ', 'lfemur.PosX', 'lfemur.PosY', 'lfemur.PosZ', 'lfemur.RotX', 'lfemur.RotY', 'lfemur.RotZ', 'ltibia.PosX', 'ltibia.PosY', 'ltibia.PosZ', 'ltibia.RotX', 'ltibia.RotY', 'ltibia.RotZ', 'lfoot.PosX', 'lfoot.PosY', 'lfoot.PosZ', 'lfoot.RotX', 'lfoot.RotY', 'lfoot.RotZ', 'toes.PosX', 'toes.PosY', 'toes.PosZ', 'toes.RotX', 'toes.RotY', 'toes.RotZ', 'rfemur.PosX', 'rfemur.PosY', 'rfemur.PosZ', 'rfemur.RotX', 'rfemur.RotY', 'rfemur.RotZ', 'rtibia.PosX', 'rtibia.PosY', 'rtibia.PosZ', 'rtibia.RotX', 'rtibia.RotY', 'rtibia.RotZ', 'rfoot.PosX', 'rfoot.PosY', 'rfoot.PosZ', 'rfoot.RotX', 'rfoot.RotY', 'rfoot.RotZ', 'rtoes.PosX', 'rtoes.PosY', 'rtoes.PosZ', 'rtoes.RotX', 'rtoes.RotY', 'rtoes.RotZ']

	




	
treadmill_markers = ['ROT_REF.PosX', 'ROT_REF.PosY', 'ROT_REF.PosZ', 'ROT_C1.PosX', 'ROT_C1.PosY', 'ROT_C1.PosZ', 'ROT_C2.PosX', 'ROT_C2.PosY', 'ROT_C2.PosZ', 'ROT_C3.PosX', 'ROT_C3.PosY', 'ROT_C3.PosZ', 'ROT_C4.PosX', 'ROT_C4.PosY', 'ROT_C4.PosZ']

	




	
write_dflow_tsv(filename, na_rep='NA')

	








	
class gaitanalysis.motek.MissingMarkerIdentifier(data_frame)

	Bases: object


	
_c = 'Z'

	




	
constant_marker_tolerance = 1e-16

	




	
identify(columns=None)

	Returns the data frame in which all or the specified columns have
had constant values replaced with NaN.





	Returns:	data_frame : pandas.DataFrame, size(n, m)


The same data frame which was supplied with constant values
replaced with NaN.




columns : list of strings, optional, default=None


The specific list of columns in the data frame that should be
analyzed. This is typically a list of all marker columns.










Notes

D-Flow replaces missing marker values with the last available
measurement in time. This method is used to properly replace them
with a unique identifier, NaN. If two adjacent measurements in time
were actually the same value, then this method will replace the
subsequent ones with NaNs, and is not correct, but the likelihood of
this happening is low.






	
marker_coordinate_suffixes = ['.PosX', '.PosY', '.PosZ']

	




	
statistics()

	Returns a data frame containing the number of missing samples and
maximum number of consecutive missing samples for each column.










	
gaitanalysis.motek.low_pass_filter(data_frame, columns, cutoff, sample_rate, **kwargs)

	Returns the data frame with indicated columns filtered with a low
pass second order forward/backward Butterworth filter.





	Parameters:	data_frame : pandas.DataFrame


A data frame with time series columns.




columns : sequence of strings


The columns that should be filtered.




cutoff : float


The low pass cutoff frequency in Hz.




sample_rate : float


The sample rate of the time series in Hz.




kwargs : key value pairs


Any addition keyword arguments to pass to dtk.process.butterworth.







	Returns:	data_frame : pandas.DataFrame


The same data frame which was passed in with the specified columns
replaced by filtered versions.















	
gaitanalysis.motek.markers_for_2D_inverse_dynamics(marker_set='lower')

	Returns lists of markers from the D-Flow human body model marker
protocol(lower or full), that should be used with leg2d.m.





	Parameters:	marker_set : string, optional, default=’lower’


Specify either ‘lower’ or ‘full’ depending on which marker set you
used.







	Returns:	left_marker_coords : list of strings, len(12)


The X and Y coordinates for the 6 left markers.




right_marker_coords : list of strings, len(12)


The X and Y coordinates for the 6 right markers.




left_forces : list of strings, len(3)


The X and Y ground reaction forces and the Z ground reaction moment
of the left leg.




right_forces : list of strings, len(3)


The X and Y ground reaction forces and the Z ground reaction moment
of the left leg.










Notes

The returned marker labels correspond to the ISB standard coordinate
system for gait, with X in the direction of travel, Y opposite to
gravity, and Z to the subject’s right.

D-Flow/Cortex output data (and marker labels) in a different coordinate
system and follow this conversion:


	The D-Flow X unit vector is equal to the ISB Z unit vector.

	The D-Flow Y unit vector is equal to the ISB Y unit vector.

	The D-FLow Z unit vector is equal to the ISB -X unit vector.



So it is up to the user to ensure that the marker and force data that
corresponds to the returned labels is expressed in the ISB coordinate
frame before passing it into leg2d.m. DFlowData has methods that
can express the data in the correct coordinate system on output.

The forces and moments must also be normalized by body mass before using
with leg2d.m.






	
gaitanalysis.motek.spline_interpolate_over_missing(data_frame, abscissa_column, order=1, columns=None)

	Returns the data frame with all missing values replaced by some
interpolated or extrapolated values derived from a spline.





	Parameters:	data_frame : pandas.DataFrame


A data frame which contains a column for the abscissa and other
columns which may or may not have missing values, i.e. NaN.




abscissa_column : string


The column name which represents the abscissa.




order : integer, optional, default=1


The order of the spline. Can be 1 through 5 for linear through
quintic splines. The default is a linear spline. See documentation
for scipy.interpolate.InterpolatedUnivariateSpline.




columns : list of strings, optional, default=None


If only a particular set of columns need interpolation, they can be
specified here.







	Returns:	data_frame : pandas.DataFrame


The same data frame passed in with all NaNs in the specified columns
replaced with interpolated or extrapolated values.

















gait Module


	
class gaitanalysis.gait.GaitData(data)

	Bases: object

A class to store typical gait data.


	
attrs_to_store = ['data', 'gait_cycles', 'gait_cycle_stats', 'strikes', 'offs']

	




	
grf_landmarks(right_vertical_signal_col_name, left_vertical_signal_col_name, method='force', do_plot=False, min_time=None, max_time=None, **kwargs)

	Returns the times at which heel strikes and toe offs happen in
the raw data.





	Parameters:	right_vertical_signal_col_name : string


The name of the column in the raw data frame which corresponds
to the right foot vertical ground reaction force.




left_vertical_signal_col_name : string


The name of the column in the raw data frame which corresponds
to the left foot vertical ground reaction force.




method: string {force|accel}


Whether to use force plate data or accelerometer data to
calculate landmarks







	Returns:	right_strikes : np.array


All indices at which right_grfy is non-zero and it was 0 at the
preceding time index.




left_strikes : np.array


Same as above, but for the left foot.




right_offs : np.array


All indices at which left_grfy is 0 and it was non-zero at the
preceding time index.




left_offs : np.array


Same as above, but for the left foot.










Notes

This is a simple wrapper to gait_landmarks_from_grf and supports all
the optional keyword arguments that it does.






	
inverse_dynamics_2d(left_leg_markers, right_leg_markers, left_leg_forces, right_leg_forces, body_mass, low_pass_cutoff)

	Computes the hip, knee, and ankle angles, angular rates, joint
moments, and joint forces and adds them as columns to the data
frame.





	Parameters:	left_leg_markers : list of strings, len(12)


The names of the columns that give the X and Y marker
coordinates for six markers.




right_leg_markers : list of strings, len(12)


The names of the columns that give the X and Y marker
coordinates for six markers.




left_leg_forces : list of strings, len(3)


The names of the columns of the ground reaction forces and
moments (Fx, Fy, Mz).




right_leg_forces : list of strings, len(3)


The names of the columns of the ground reaction forces and
moments (Fx, Fy, Mz).




body_mass : float


The mass, in kilograms, of the subject.




low_pass_cutoff : float


The cutoff frequency in hertz.







	Returns:	data_frame : pandas.DataFrame


The main data frame now with columns for the new variables. Note
that the force coordinates labels (X, Y) are relative to the
coordinate system described herein.










Notes

This computation assumes the following coordinate system:

Y
 ^ _ o _
 |   |   ---> v
 |  /             -----> x





where X is forward (direction of walking) and Y is up.

Make sure the sign conventions of the columns you pass in are
correct!


	The markers should be in the following order:

	
	Shoulder

	Greater trochanter

	Lateral epicondyle of knee

	Lateral malleolus

	Heel (placed at same height as marker 6)

	Head of 5th metatarsal







The underlying function low pass filters the data before computing
the inverse dynamics. You should pass in unfiltered data.






	
load(filename)

	Loads data from disk via HDF5 (PyTables).





	Parameters:	filename : string


Path to an HDF5 file.















	
plot_gait_cycles(*col_names, **kwargs)

	Plots the time histories of each gait cycle.





	Parameters:	col_names : string


A variable number of strings naming the columns to plot.




mean : boolean, optional


If true the mean and standard deviation of the cycles will be
plotted.




kwargs : key value pairs


Any extra kwargs to pass to the matplotlib plot command.















	
plot_landmarks(col_names, side, event='both', index=0, window=None, num_cycles_to_plot=None, curve_kwargs=None, heel_kwargs=None, toe_kwargs=None)

	Creates a plot of the desired signal(s) with the gait event times
overlaid on top of the signal.





	Parameters:	col_names : sequence of strings


A variable number of strings naming the columns to plot.




side : string, {right|left}


Whether to plot the gait landmarks from the right or left leg.




event : string, {heelstrikes|toeoffs|both|none}


Which gait landmarks to plot.




index : integer, optional, default=0


The index of the first time sample in the plot. This is useful
if you want to plot the cycles starting at an arbitrary point in
time in the data.




window : integer, optional, default=None


The number of time samples to plot. This is useful when a trial
has many cycles and you only want to view some of them in the
plot.




num_cycles_to_plot : integer, optional, default=None


This is an alternative way to specify the window. If this is
provided, the window argment is ignored and the window is
estimated by the desired number of cycles.




curve_kwargs : dictionary, optional


Valid matplotlib kwargs that will be used for the signal curves.




heel_kwargs : dictionary, optional


Valid matplotlib kwargs that will be used for the heel-strike
lines.




toe_kwargs : dictionary, optional


Valid matplotlib kwargs that will be used for the toe-off lines.







	Returns:	axes : matplotlib.Axes


The list of axes for the subplots or a single axes if only one
column was supplied. Same as matplotlib.pyplot.subplots
returns.










Notes

The index, window and num_cycles_to_plot arguments do not
simply set the x limit to bound the data of interest, they do not
plot any data outside the desired range (and is thus faster).






	
save(filename)

	Saves data to disk via HDF5 (PyTables).





	Parameters:	filename : string


Path to an HDF5 file.















	
split_at(side, section='both', num_samples=None, belt_speed_column=None)

	Forms a pandas.Panel which has an item for each cycle. The index
of each cycle data frame will be a percentage of gait cycle.





	Parameters:	side : string {right|left}


Split with respect to the right or left side heel strikes and/or
toe-offs.




section : string {both|stance|swing}


Whether to split around the stance phase, swing phase, or both.




num_samples : integer, optional


If provided, the time series in each gait cycle will be
interpolated at values evenly spaced at num_sample in time
across the gait cycle. If None, the maximum number of possible
samples per gait cycle will be used.




belt_speed_column : string, optional


The column name corresponding to the belt speed on the
corresponding side.







	Returns:	gait_cycles : pandas.Panel


A panel where each item is a gait cycle. Each cycle has the same
number of time samples and the index is set to the  percent of
the gait cycle.















	
time_derivative(col_names, new_col_names=None)

	Numerically differentiates the specified columns with respect to
the time index and adds the new columns to self.data.





	Parameters:	col_names : list of strings


The column names for the time series which should be numerically
time differentiated.




new_col_names : list of strings, optional


The desired new column name(s) for the time differentiated
series. If None, then a default name of Time derivative of
<origin column name> will be used.















	
tpose(data_frame)

	Computes the mass of the subject.
Computes to orientation of accelerometers on a subject during quiet
standing relative to treadmill Y-axis










	
gaitanalysis.gait.find_constant_speed(time, speed, plot=False, filter_cutoff=1.0)

	Returns the indice at which the treadmill speed becomes constant and
the time series when the treadmill speed is constant.





	Parameters:	time : array_like, shape(n,)


A monotonically increasing array.




speed : array_like, shape(n,)


A speed array, one sample for each time. Should ramp up and then
stablize at a speed.




plot : boolean, optional


If true a plot will be displayed with the results.




filter_cutoff : float, optional


The filter cutoff frequency for filtering the speed in Hertz.







	Returns:	indice : integer


The indice at which the speed is consider constant thereafter.




new_time : ndarray, shape(n-indice,)


The new time array for the constant speed section.















	
gaitanalysis.gait.gait_landmarks_from_accel(time, right_accel, left_accel, threshold=0.33, **kwargs)

	Obtain right and left foot strikes from the time series data of accelerometers placed on the heel.





	Parameters:	time : array_like, shape(n,)


A monotonically increasing time array.




right_accel : array_like, shape(n,)


The vertical component of accel data for the right foot.




left_accel : str, shape(n,)


Same as above, but for the left foot.




threshold : float, between 0 and 1


Increase if heelstrikes/toe-offs are falsly detected







	Returns:	right_foot_strikes : np.array


All times at which a right foot heelstrike is determined




left_foot_strikes : np.array


Same as above, but for the left foot.




right_toe_offs : np.array


All times at which a right foot toeoff is determined




left_toe_offs : np.array


Same as above, but for the left foot.















	
gaitanalysis.gait.gait_landmarks_from_grf(time, right_grf, left_grf, threshold=1e-05, filter_frequency=None, **kwargs)

	Obtain gait landmarks (right and left foot strike & toe-off) from ground
reaction force (GRF) time series data.





	Parameters:	time : array_like, shape(n,)


A monotonically increasing time array.




right_grf : array_like, shape(n,)


The vertical component of GRF data for the right leg.




left_grf : str, shape(n,)


Same as above, but for the left leg.




threshold : float, optional


Below this value, the force is considered to be zero (and the
corresponding foot is not touching the ground).




filter_frequency : float, optional, default=None


If a filter frequency is provided, in Hz, the right and left ground
reaction forces will be filtered with a 2nd order low pass filter
before the landmarks are identified. This method assumes that there
is a constant (or close to constant) sample rate.







	Returns:	right_foot_strikes : np.array


All times at which right_grfy is non-zero and it was 0 at the
preceding time index.




left_foot_strikes : np.array


Same as above, but for the left foot.




right_toe_offs : np.array


All times at which left_grfy is 0 and it was non-zero at the
preceding time index.




left_toe_offs : np.array


Same as above, but for the left foot.










Notes

Source modifed from:

https://github.com/fitze/epimysium/blob/master/epimysium/postprocessing.py






	
gaitanalysis.gait.interpolate(data_frame, time)

	Returns a data frame with a index based on the provided time
array and linear interpolation.





	Parameters:	data_frame : pandas.DataFrame


A data frame with time series columns. The index should be in same
units as the provided time array.




time : array_like, shape(n,)


A monotonically increasing array of time in seconds at which the
data frame should be interpolated at.







	Returns:	interpolated_data_frame : pandas.DataFrame


The data frame with an index matching time_vector and interpolated
values based on data_frame.















	
gaitanalysis.gait.plot_gait_cycles(gait_cycles, *col_names, **kwargs)

	Plots the time histories from each gait cycle on one graph.





	Parameters:	gait_cycles : pandas.Panel


A panel of gait cycles. Each item should be a cycle DataFrame with
time histories of variables. The index should be the percent gait
cycle.




col_names : string


A variable number of strings naming the columns to plot.




mean : boolean, optional, default=False


If true the mean and standard deviation of the gait cycles will be
plotted instead of the individual lines.




kwargs : key value pairs


Any extra kwargs to pass to the matplotlib plot command.

















controlid Module


	
class gaitanalysis.controlid.SimpleControlSolver(data, sensors, controls, validation_data=None)

	Bases: object

This assumes a simple linear control structure at each time instance
in a gait cycle.

The measured joint torques equal some limit cycle joint torque plus a
matrix of gains multiplied by the error in the sensors and the nominal
value of the sensors.

m_measured(t) = m_nominal + K(t) [s_nominal(t) - s(t)] = m*(t) - K(t) s(t)

This class solves for the time dependent gains and the “commanded”
controls using a simple linear least squares.


	
compute_estimated_controls(gain_matrices, nominal_controls)

	Returns the predicted values of the controls and the
contributions to the controls given gains, K(t), and nominal
controls, m*(t), for each point in the gait cycle.





	Parameters:	gain_matrices : ndarray, shape(n, q, p)


The estimated gain matrices for each time step.




control_vectors : ndarray, shape(n, q)


The nominal control vector plus the gains multiplied by the
reference sensors at each time step.







	Returns:	panel : pandas.Panel, shape(m, n, q)


There is one data frame to correspond to each gait cycle in
self.validation_data. Each data frame has columns of time series
which store m(t), m*(t), and the individual components due to
K(t) * se(t).










Notes

m(t) = m0(t) + K(t) * [ s0(t) - s(t) ] = m0(t) + K(t) * se(t)
m(t) = m*(t) - K(t) * s(t)

This function returns m(t), m0(t), m*(t) for each control and K(t) *
[s0(t) - s(t)] for each sensor affecting each control. Where s0(t)
is estimated by taking the mean with respect to the gait cycles.






	
controls

	




	
deconstruct_solution(x, covariance)

	Returns the gain matrices, K(t), and m*(t) for each time step in
the gait cycle given the solution vector and the covariance matrix
of the solution.

m(t) = m*(t) - K(t) s(t)





	Parameters:	x : array_like, shape(n * q * (p + 1),)


The solution matrix containing the gains and the commanded
controls.




covariance : array_like, shape(n * q * (p + 1), n * q * (p + 1))


The covariance of x with respect to the variance in the fit.







	Returns:	gain_matrices : ndarray,  shape(n, q, p)


The gain matrices at each time step, K(t).




control_vectors : ndarray, shape(n, q)


The nominal control vector plus the gains multiplied by the
reference sensors at each time step.




gain_matrices_variance : ndarray, shape(n, q, p)


The variance of the found gains (covariance is neglected).




control_vectors_variance : ndarray, shape(n, q)


The variance of the found commanded controls (covariance is
neglected).










Notes


	x looks like:

	
	[k11(0), k12(0), ..., kqp(0), m1*(0), ..., mq*(0), ...,

	k11(n), k12(0), ..., kqp(n), m1*(n), ..., mq*(n)]







If there is a gain omission matrix then nan’s are substituted for
all gains that were set to zero.






	
form_a_b()

	Returns the A matrix and the b vector for the linear least
squares fit.





	Returns:	A : ndarray, shape(n * q, n * q * (p + 1))


The A matrix which is sparse and contains the sensor
measurements and ones.




b : ndarray, shape(n * q,)


The b vector which constaints the measured controls.










Notes

In the simplest fashion, you can put:

m(t) = m*(t) - K * s(t)





into the form:

Ax = b





with:

b = m(t)
A = [-s(t) 1]
x = [K(t) m*(t)]^T

[-s(t) 1] * [K(t) m*(t)]^T = m(t)










	
form_control_vectors()

	Returns an array of control vectors for each cycle and each time
step in the identification data.





	Returns:	control_vectors : ndarray, shape(m, n, q)


The sensor vector form the i’th cycle and the j’th time step
will look like [control_0, ..., control_(q-1)].















	
form_sensor_vectors()

	Returns an array of sensor vectors for each cycle and each time
step in the identification data.





	Returns:	sensor_vectors : ndarray, shape(m, n, p)


The sensor vector form the i’th cycle and the j’th time step
will look like [sensor_0, ..., sensor_(p-1)].















	
gain_inclusion_matrix

	




	
identification_data

	




	
least_squares(A, b, ignore_cov=False)

	Returns the solution to the linear least squares and the
covariance matrix of the solution.





	Parameters:	A : array_like, shape(n, m)


The coefficient matrix of Ax = b.




b : array_like, shape(n,)


The right hand side of Ax = b.




ignore_cov: boolean, optional, default=False


The covariance computation for a very large A matrix can be
extremely slow. If this is set to True, then the computation is
skipped and the covariance of the identified parameters is set
to zero.







	Returns:	x : ndarray, shape(m,)


The best fit solution.




variance : float


The variance of the fit.




covariance : ndarray, shape(m, m)


The covariance of the solution.















	
plot_control_contributions(estimated_panel, max_num_gait_cycles=4)

	Plots two graphs for each control and each gait cycle showing
contributions from the linear portions. The first set of graphs
shows the first few gait cycles and the contributions to the control
moments. The second set of graph shows the mean contributions to the
control moment over all gait cycles.





	Parameters:	panel : pandas.Panel, shape(m, n, q)


There is one data frame to correspond to each gait cycle. Each
data frame has columns of time series which store m(t), m*(t),
and the individual components due to K(t) * se(t).















	
plot_estimated_vs_measure_controls(estimated_panel, variance)

	Plots a figure for each control where the measured control is
shown compared to the estimated along with a plot of the error.





	Parameters:	estimated_panel : pandas.Panel


A panel where each item is a gait cycle.




variance : float


The variance of the fit.







	Returns:	axes : array of matplotlib.axes.Axes, shape(q,)


The plot axes.















	
plot_gains(gains, gain_variance, y_scale_function=None)

	Plots the identified gains versus percentage of the gait cycle.





	Parameters:	gain_matrix : ndarray, shape(n, q, p)


The estimated gain matrices for each time step.




gain_variance : ndarray, shape(n, q, p)


The variance of the estimated gain matrices for each time step.




y_scale_function : function, optional, default=None


A function that returns the portion of a control and sensor
label that can be used for scaling the y axes.







	Returns:	axes : ndarray of matplotlib.axis, shape(q, p)












	
sensors

	




	
solve(sparse_a=False, gain_inclusion_matrix=None, ignore_cov=False)

	Returns the estimated gains and sensor limit cycles along with
their variance.





	Parameters:	sparse_a : boolean, optional, default=False


If true a sparse A matrix will be used along with a sparse
linear least squares solver.




gain_inclusion_matrix : boolean array_like, shape(q, p)


A matrix which is the same shape as the identified gain matrices
which has False in place of gains that should be assumed to be
zero and True for gains that should be identified.




ignore_cov: boolean, optional, default=False


The covariance computation for a very large A matrix can be
extremely slow. If this is set to True, then the computation is
skipped and the covariance of the identified parameters is set
to zero.







	Returns:	gain_matrices : ndarray, shape(n, q, p)


The estimated gain matrices for each time step.




control_vectors : ndarray, shape(n, q)


The nominal control vector plus the gains multiplied by the
reference sensors at each time step.




variance : float


The variance in the fitted curve.




gain_matrices_variance : ndarray, shape(n, q, p)


The variance of the found gains (covariance is neglected).




control_vectors_variance : ndarray, shape(n, q)


The variance of the found commanded controls (covariance is
neglected).




estimated_controls : pandas.Panel












	
validation_data
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